Dirichlet-neumann Kernel for Hyperbolic-dissipative System in Half-space
نویسنده
چکیده
The purpose of the present paper is to initiate a systematic study of the relation of the boundary values for hyperbolic-dissipative systems of partial differential equations. We introduce a general framework for explicitly deriving the boundary kernel for the Dirichlet-Neumann map. We first use the Laplace and Fourier transforms, and the stability consideration to derive the Master Relationship, the Dirichlet-Neumann relation in the transformed variables. New idea of Fourier-Laplace path and algebraic considerations are introduced for the explicit inversion of Fourier-Laplace transforms. We illustrate the basic ideas by carrying out the framework to models in the gas dynamics and the dissipative wave equations.
منابع مشابه
Uniqueness for a wave propagation inverse problem in a half space
This paper considers an inverse problem for wave propagation in a perturbed, dissipative half-space. The perturbation is assumed to be compactly supported. This paper shows that in dimension three, the perturbation is uniquely determined by knowledge of the Dirichlet-to-Neumann map on an open subset of the boundary.
متن کاملNUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4
In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...
متن کاملRayleigh Wave in an Initially Stressed Transversely Isotropic Dissipative Half-Space
The governing equations of a transversely isotropic dissipative medium are solved analytically to obtain the surface wave solutions. The appropriate solutions satisfy the required boundary conditions at the stress-free surface to obtain the frequency equation of Rayleigh wave. The numerical values of the non-dimensional speed of Rayleigh wave speed are computed for different values of frequency...
متن کاملOptimal decay estimates for the general solution to a class of semi-linear dissipative hyperbolic equations
We consider a class of semi-linear dissipative hyperbolic equations in which the operator associated to the linear part has a nontrivial kernel. Under appropriate assumptions on the nonlinear term, we prove that all solutions decay to 0, as t → +∞, at least as fast as a suitable negative power of t. Moreover, we prove that this decay rate is optimal in the sense that there exists a nonempty ope...
متن کاملWell-posedness of the Stokes-Coriolis system in the half-space over a rough surface
This paper is devoted to the well-posedness of the stationary 3d Stokes-Coriolis system set in a half-space with rough bottom and Dirichlet data which does not decrease at space infinity. Our system is a linearized version of the Ekman boundary layer system. We look for a solution of infinite energy in a space of Sobolev regularity. Following an idea of Gérard-Varet and Masmoudi, the general st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012